Designing An Android Sensor Subsystem

Pitfalls and Considerations

Jen Costillo jen@rebelbot.com

Simple Choices

User experience

14/2012

Latency

Gesture Recognition

Sensor Sampling

Battery performance

Wake Up event processing

Gesture Processing

Calibration Strategy

Co-processor architecture

2

0

Established or Innovative Product?

Established

- Will I be making another new product in 6 months?
- Is the reference design considered good enough for the application?

Innovation-Driven

- Do I have new sensors types?
- Are features more important than release date?
- Are money and resources no problem?

Forsaking Reference Designs

Going On Your Own

- If you make your own,
 - You're on your own
 - Integration pains
 - Test time 个
 - Gesture testing
 becomes a challenge
 - Calibration blues
 - Larger mechanical footprint

• But...

- power ↓
- Control code size
- Control mechanical footprint
- In-house expertise

Application

Frameworks

Libraries

Linux Kernel

HARDWARE

Hardware

Hardware Architecture

201

Sensor Selection

- Limited types
- New type
- Latency
- Power consumption

4/2012

Sensor Sampling Rate

Sampling Rates: The 3 Rates

Under-sampling

4/201

- Inaccurate, sluggish response
- Slight power savings

Over-sampling

- Accurate, smooth response
- Power-hungry

Sampling Rate

Polling versus Interrupt

Pros:

- Simplicity
- Throttle data throughput

Pros:

- Low power Sleep Mode
- Use fewer timers

Cons:

- Less sleep
- Latency ↑
- Data loss

Cons:

 Complex program structure

Wake up events and power considerations

Application Processor only	Internal Coprocessor	External Processor
Reference supported Most power hungry	Reference supported Most work done for you	More processor selection More outcome control Most customized Footprint impact

Sensor Subsystem/Hub

- Separate processor or part of the Application processor
- How to evaluate?
 - Latency
 - Power consumption
 - Low power modes

Hardware Summary

Power Consumption = Σ sensors_n + any dedicated processor

14/2012

Latency = Max(sensors_n) + dedicated processing time

Sensor Solution

Use tie-breaker criteria

KERNEL

Application

Frameworks

Libraries

Linux Kernel

2 2.

Hardware

Kernel Driver Application Processor Peripheral Shared Interface Memory Microcontroller Sensor Coprocessor

1201

Application

Frameworks

Libraries

LIBRARIES AND SERVICES

Linux Kernel

Hardware

Sensor HAL and Services

• HAL

device/<vendor>/<board name>/libsensors

Service

frameworks/base/services/sensorservice

Manager

frameworks/base/libs/gui

2/14/2012

Costillo- Android Builders Summit 2012

Sensor Fusion

Sensor fusion is the combining of sensory data or data derived from sensory data from disparate sources such that the resulting information is in some sense *better* than would be possible when these sources were used individually. The term

Libraries

Linux Kernel

Sensor Hub

Sensors

http://en.wikipedia.org/wiki/Sensor_fusion https://www.llnl.gov/news/newsreleases/2010/NR-10-01-06.html

Gesture Detection Algorithm

Gesture Detection Comparison

Calibration

14/2012

Application

Frameworks

Libraries

OTHER CONSIDERATIONS

Hardware

Linux Kernel

Testing Methodologies

- Creating tools
- Checkpoints at all levels
- Ensure the application processor can see each of your sensors
- Compatibility Test Suite (CTS) at application level -/cts/tests/tests/hardware... SensorTest.java
- Test services -/frameworks/base/services/sensorservice/tests
- Manufacturing tests

JEN@REBELBOT.COM

Additional resources

http://processors.wiki.ti.com/index.php/Android_Sensor_PortingGuide http://www.kandroid.org/online-pdk/guide/sensors.html